Whitney triangulations of semialgebraic sets

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pixelations of planar semialgebraic sets

We describe an algorithm that associates to each positive real number r and each finite collection Cr of planar pixels of size r a planar piecewise linear set Sr with the following additional property: if Cr is the collection of pixels of size r that touch a given compact semialgebraic set S, then the normal cycle of Sr converges to the normal cycle of S in the sense of currents. In particular,...

متن کامل

Minimizing Polynomials Over Semialgebraic Sets

This paper concerns a method for finding the minimum of a polynomial on a semialgebraic set, i.e., a set in R defined by finitely many polynomial equations and inequalities, using the Karush-Kuhn-Tucker (KKT) system and sum of squares (SOS) relaxations. This generalizes results in the recent paper [15], which considers minimizing polynomials on algebraic sets, i.e., sets in R defined by finitel...

متن کامل

Matrix Convex Hulls of Free Semialgebraic Sets

This article resides in the realm of the noncommutative (free) analog of real algebraic geometry – the study of polynomial inequalities and equations over the real numbers – with a focus on matrix convex sets C and their projections Ĉ. A free semialgebraic set which is convex as well as bounded and open can be represented as the solution set of a Linear Matrix Inequality (LMI), a result which s...

متن کامل

Optimization of Polynomials on Compact Semialgebraic Sets

A basic closed semialgebraic subset S of Rn is defined by simultaneous polynomial inequalities g1 ≥ 0, . . . , gm ≥ 0. We give a short introduction to Lasserre’s method for minimizing a polynomial f on a compact set S of this kind. It consists of successively solving tighter and tighter convex relaxations of this problem which can be formulated as semidefinite programs. We give a new short proo...

متن کامل

Unbounded Convex Semialgebraic Sets as Spectrahedral Shadows

Recently, Helton and Nie [3] showed that a compact convex semialgebraic set S is a spectrahedral shadow if the boundary of S is nonsingular and has positive curvature. In this paper, we generalize their result to unbounded sets, and also study the effect of the perspective transform on singularities.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales Polonici Mathematici

سال: 2005

ISSN: 0066-2216,1730-6272

DOI: 10.4064/ap87-0-20